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ABSTRACT

Large orbiting space structures are expected to experience mechanical vibrations arising from several
disturbing forces such as those induced by shuttle takeoff or docking and crew movements. In this paper, we
consider the problem of modeling and control of large space structures subject to these and other disturbing
forces. The system consists of a (rigid) massive body, which may play the role of experimental modules
located at the center of the space station and flexible configurations, consisting of several beams, forming the
space structure. A complete dynamic model of the system has been developed using Hamilton's principle.
This model consists of radial equations describing the translational motion of the central body, rotational"
equations describing the attitude motions of the body and several beam equations governing the vibration of
the flexible members (platform) including appropriate boundary conditions. In summary the dynamics of the
space structure is governed by a complex system of interconnected partial and ordinary differential equations.

Using Lyapunov's approach the asymptotic stability of the space structure is investigated. For asymptotic
stability of the rest state (nominal trajectory) we have suggested feedback controls. In our investigation
stability of the slewing maneuvers is also considered.

Several numerical results are presented for illustration of the impact of coupling and the effectiveness
of the stabilizing controls. This study is expected to provide some insight into the complexity of modeling,
analysis and stabilization of actual space structures.

1.INTRODUCTION

Structural vibrations in future large space systems(Fig.I) such as space antennas, space platforms, space
stations, or deployed flexible payloads attached to the space shuttle orbiter, and their interaction with the
other members of the system have become a major concern in design of reliable systems satisfying stringent
stability requirements. During the past few years, considerable attention have been focused on the development
of mathematical model and stabilizing controls for such systems[I-13].

The most natural model for flexible space structures is given by a hybrid system of equations which is a
combination of ordinary differential equations for rigid parts and partial differential differential equations for
flexible members. Hybrid models for some simple structures have been considered in [5-11]. Recently Lim[12]
developed a complete dynamic model, which includes the orbital dynamics, attitude dynamics and equations
for vibrations of flexible members and all the relevant boundary conditions, for flexible space structures. Here,
in this paper, based on the dynamic model we develop a control scheme to suppress the vibration induced by
slew maneuvers in space stations.

The paper is organized as follows. In the next section we present the equations of motion for large
spacecraft derived in [12]. In section 3, based on Lyapunov's approach, asymptotic stability of slew maneuvers
for the system using feedback control is considered. For illustration, in section 4, we present some numerical
results demonstrating the effectiveness of the stabilizing controls for vibration suppression associated with slew
maneuvers. Finally, the concluding remarks are presented.
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2 DYNAMIC MODEL OF FLEXIBLE SPACE STATIONS

2.1 Introduction

We describe the dynamics of the space station by
Three Types of Motion:

- Rigid body translation perturbing the orbit.

- Rigid body rotation perturbing the orientation of the system.

- Vibration of the elastic members causing elastic deformation of the system.

To derive the dynamics we use the following coordinate systems:
2.2 Reference Coordinate Systems

- Body Coordinate System SB: (ib,jb,kb)

- Orbital Reference Coordinate System Sr: (it, jr, kr)

- Inertial Coordinate System SI: (il,Jl, kI)

An_ular Velocities

wb = (wx,w_, w,)':angular velocityof body frame w.r.t,the St.

We = (wx, wy, wz)':angu]ar velocity of Sr w.r.t. SI.

w = Wb + mr = (wt, w2, w3)':angular velocity of SB w.r.t. SI.

{(!0!)
1 , for i=1,2,3,4,

0

0 , for i=5,6.
0

ri = R + ri, with _i - (_i, .Oi,zi)' = Dio + Di,

where R = (X, Y, g)', Dio _ (xlo, yio, Zio)', and Di =- Qi (xi, vi, zl)', i=1,2,..,6.

fli = (0, li), i=1,2,...,6 for li(the length of the beam i).

Dlo = (sl.+ _i, st,, 0)', D2o = (s:= + _2, s2,, 0)',

Dao = (-(s3. + _a), sa,,O)', D,° = (-(s4. + _4), s%, 0)',

350 = (ssf,-ss, + _5,0)', D6o = (s6=, -s6, + _6,0)',

(1)

(2)

(3)

(4)
(5)

beam 6 "ffi

-4 .......

,,_ _ta..... J'_.L.I "r.k_L_-lJ i, "'! l! _[7 I '9_

_ . , :,., -- /
beam 3 p-j3 ] ,71_'\ beam I hl _,/beam 5

beam4 _./_,4 - ,d2./ beam2 ½l I*'
.... _ 'kk.

r rigid bus ' " "_

@ mass center of the space ltation
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2.3 Inertia Tensor

The beam inertia tensor is given by

h

where

I_. -I. v -I.,)
- -I.y Ivy -Iv,

-Iz, -Iv, I.,

I=.=_f n'= ,Pi(l)_+_)d¢i'

6

i=l i

6

i=l i

6

x.v = _ fnP'_'#'_"
i=1 i

6

I.. = _ £ p,_,_,_.,,
i=1

6

i=l i

(s)

(7)

(8)

(9)

(lO)

(11)

(12)

2.4 Dynamic Model of the Space Station

Let the Lagrangian of the whole system be denoted by L and external work by W.
extended Hamilton's principle we obtain the relation[12,13]:

["e (L+ W)dt

f{ °L }-- (dfR) o 71 - (60) o Z2 + E (6Di) o Z3d_i + Z4 at
i=1 i

E_ O,

where

):r_=_,--_-+_.= , -ag+_,x,_+b_ dm_+

G rrl e lTl r __

IRI3
"_SJ

Z,=T- (I'°_)+Ei=l ,fix--ami}+)dt ) _ i x L--_)dml,

d_rl O_ fEZ 02Di'_
Za = Pi--_T + _ _, i'ff_i2 )- b" i= 1,2,...,6,

Then using the

(13)

(14)

(15)

(16)

(17)
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Let

Eli,, 0 0 )
Eli- 0 EIi_ 0 , / = 1,2,...,6.

0 0 EIi_

(0,Fi,,Fi.)', for i=1,2,3,4,P" = (F,., 0, F,i.),' for i=5,6.

For boundary conditions we introduce the following assumptions:

Assumptions for the Joints and Beams:

(i) The structures are in xy plane in undisturbed state,

(ii) The beams 1,2,3,4 are clamped at the joints ,71,3"2 ,ffa, ,74,

(iii) Displacements of the beams 1,2,...,6 are small,

(iv) The beams 5,6 are rigidly jointed with the other four beams as shown in Fig.2.

(18)

(19)

For convenience of presentation we use the following notations:

oti--¢b x _i + 2_ x bi +w x (w x fi), i = 1,2,...,6.

(F_,,Fi,)', for i=1,2,3,4, (20)Fb, = (Fi. , F_.)', for i=5,6.

1 for i=1,2,3,4,
(_ 001)0 , for i=5,6,

s

mass of beams :m_ = Z fn dmi, mass of the body = m, (22)
i=1 '

mass density of the beam : Pl = Pi(_i), mr =- m, + ma (23)

6

I_ow=F_.[ _,x(.,x e.)em, (24)
i=1

Ir = I, + I_, I, : inertia of the body Ib : inertia of the beams. (25)

Since the variations 6R, _f8 and 6Di are arbitrary in (13), 2-i, i = 1, 2, 3 are all zero provided 2"4=0 from
the boundary conditions. Hence we obtain from this fact the following equations of motion[12,13]:

2-1=0, that is,

"" { }m,-j_-+ (_ _)+_i=1 ,Pi X X (OJ X ri)-t- /)i q-2w X Di d_i -{-

Gme lqr_r ]_

IRI3
-- Fs, (26)

2"2:0, that is,

r,o,_+_x(ao_)+ho,,,+ p, ,_,x-zs- ) _,

o o ( } (27)
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andfor_iE 12i,_j El_j; i=1,2,3,4, j=5,6, 2"3=0, that is,

o2 y, +P'Q' _'+ dr2]+_7 I°'"Pi fffi zi

02 d2R_ 02 [ [ EI_

Ehz _ zi

x1 = F,j.

(28)

(29)

Let C_ denote the coordinate transformation matrix from body to inertial frame and (ai, aj, a_)' = (C_)'

ffq_2R. Then the equations of motion given in (26-29) can be written in explicit form for computer simulation
as follows.

DODY DYNAMICS(TRANSLATION)

m,_ +C_ I2(t)]
f3(t)]

where

+ halt) = f2 ,
h6(t) F3

Ix(t) = p, (_,:,2- #,,_3)+ 2(,,,_--_- _3-_')

O2xi "1

+,_,,,2,J,+ ,,,lw_ - (,d + _)_, + _ _.,

_.f, { ox, o,,.f2(0= ;o_ _,w3 - e_wl+ 2(_3--_- - _x _--)

(30)

02Yi _d¢_,
+ _2w_ + w_, - (_ + _)_, + _-rj

6

/=1 J_d t,

O2 z_ ",

+ ,,,_,,_, + ,,,_,.2,_,- (w_+ _)_, + _a_,,

Gfnemr _

h4(t)- _ 2_,

Gmemr _

he(t)- _ Y,

G _qr_e r'll r _

h_(t)- _-_ z,

BQDY DYNAMICS(ROTATION)

where

(31)

(32)

(33)

(34)

(35)

(36)

()( o)5., 0 -w3 w2 wz .t'4+ .t';,

I, o_2 + w3 0 - z Ir w_ + fe+fs = T2 , (37)

(38)
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(39)

(40)

{ }
fg(t)---_/Pi{xia.i-ffiai}d',,

i=1 Jfli

BEAM DYNAMICS(BEAM VIBRATION)

02 yi +Pi 0 -2o.,1 0 Yi +
"-_ zl 2w, 0 "_ zi 0_ EI,, _ zi

+ ,oik,,/_ + ,o2,o3 -w[ - ,o] ) _ k -,_2 +,0_,_3

daR {F,,'_ for _, e fh, i = 1,2,3,4,+ p,0,&'_- = \F,. ]'

(41)

(42)

(43)

(44)

o2 02( 02)o (5',-o
,, () ( )+ PJ \ -fv2 + wawl 2 2 + P.if6-wl - w2 J _ ,i,l + w2w3

- B d' R ( F/. )+ p_O_Cl --_ = fj ' for_eej, j=5,6. (45)

BOUNDARY CONDITIONS FOR BEAM DYNAMICS

Since the beams(l-4) are clamped to the centralbody and the end beams(5,6) are rigidlyjointedto the

firstfourbeams as shown in Fig.2,the followingboundary conditionsmust hold.

Clamped at _i = O, i=1,2,3,4 for the joints 3"x, J2, 3"3, ,74:

re(o, t) = o, z,(O,t) = o, (46)

°Y' m t) = o, 0z,
0_i '-' _(0, t) = O, (47)

Continuity of displacements at the joints ,.75, ,.76,3"7, ,.78:

_s(t_,t) = o, _,(t_,t) = z_(_,t), _t 3"_, (48)
xs(O,t) = o, z2(12,t)= zs(O,t), at 3"_, (49)
_(t_,t) = o, _a(t_,t) = _(t+, t), at y_, (50)
• _(O,t) = O, _4(t_,t) = _dO,t), at 3"s, (5X)
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Continuity of slopes at the joints ,75, ,76, ,77, Ys:

Equilibrium equations:

at ,75,

at ,78,

at ,7;,,

at ,78,

03yl i I t_
EIl_"O'_'l t l, j = O,

03y2
EI_,-_zr_(l_,t) = O,

O_2Z5 _2Zl .. .

EZ,.-b-ff(t,,t) = o, Ez. TffUx,O = o,

02z6 " El 02z2"" "
EZs,-#ff(v,t)= o, 2,oel ('_'0 = o,

CQ2Z6 02 Z3 [ i , ,_

EZ_,-_-/_(to,t) = O, EI_ _---_-_,_,_j= O,

Er 02z6,,, E- 02z4-" "

EX_,_(t_, 0 = O,

EX4y_ (4, 0=o,
°_z'. _z6

EI1x -ff_l kq,t) + EIs,._s (ls,t) = O,

OSzs%,t) _z61, t) O,EI_. a--if' - + Ez_.-b-ff._, =

#Sz_'l " Oaz5
EI_,-b-ff( _,t) - Ez_,-b-ff(o,t) = o,

Eh" o-b-ff_(_4,t)- E_. a-_f(o,t) = o,

_._ _ -b--ff(t_,O = o,

EZ_.o¢---T(_,0+ _-b_-(o,t) = o,

Ehu 0-_-'(,4, t) - t) 0.

(52)

(53)

(54)

(_5)

(56)

(57)

(58)

(59)

(60)

(_)

(62)

(63)

(64)

(65)

(66)

(6r)

(68)

(69)
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3. STABILIZATION OF SPACE STATIONS

3.! The Reference Trajectory

Let tt0 denote the reference trajectory(nominal trajectory) governed by the equation

dCRo GmeRo

dt----_- + ]Rop - 0,
(70)

with the initial conditions:

(d-T × Ro × -_- - IR_I ' at t = 0. (71)

Denoting the excursion of the radial vector R around the nominal trajectory by R - R - Ro =(X,Y, Z)' we

obtain from eqs.(26) and (70) the perturbed radial dynamics:

m_,d--fi-+ _ ,pi(,,, x _ + +
i=l

Gme }Tlv/_

IRol3
= Fo. (72)

3.2 The Rest State

For stability of the system subject to external disturbances we consider the rest state:

Wl = 0, I/)2 = 0, w3 = 0, (73)

X(t) = Y(t) = 2(0 = 0, _z(t) = 62(t) = _3(t) = 0, (74)

and for k =5,6; j= 1,2,3,4; i= 1,2,...,6,

Ox_ _ Ozi _
Zk(_k,_ ) = _]j(_j,l) "-- Zi(_i,$ ) = O, -'-_(_k,t) = _- (_j,$) = "_(_i,t) = O, (75)

where 6 ____ _= (6x, v2,63)'.

Theorem 1 (Distributed Control)

Consider the perturbed system described by the equations (30-69) around the reference trajectory. Sup-
pose that the controls applied to the system are given by the feedback law:

T = (T= - kzwz, Ty - k2w2, Tz - k3_3)', kz, k2, k3 > 0, (76)

OxlFb, = Qi (-4i, -- di, "-_, 2i, - diu , Ai. - di, 0zi_'_], d4,, di_, di, > 0, i = 1, 2, ..., 6, (77)

F, = (-ez_z, -e262, -e3_3)', ez,e2, e3 > 0, (78)

m Gm 6 -
where (A,, ,A/, , A,. )' - -p, a_o_R0 and (T_,Tu,T,)' - -_(_7_i=zfn, Pirid_i)xRo. Then the system is

asymptotically stable (in the sense of Lyapunov) with respect to the rest state (73-75).
Proof see the refs.[12,13].

Remark

Defining the state variable z appropriately and incorporating the boundary conditions in the differential
operator one can rewrite the system equation as an ordinary differential equation in a Banach space (probably
Orlicz space) as follows

= Az + r(=, }), (79)

where A can be proved to be the infinitesimal generator of a Co- semigroup in the Ban_h space and F is a
strongly nonlinear operator having polinomial growth. This is a descriptor system in an infinite dimensional
space and very little is known about these systems concerning the existence and uniqueness of nonlinear
semigroups.
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4 NUMERICAL RESULTS

For numerical simulation we assume that (i) the bus inertia tensor is diagonal. (ii) the flexible members

consist of three beams (i.e., beams 1,2 and 5 in Fig.4) and each beam is uniform.

The following data and parameters were used.
System Parameters:

Io=diag( I1,/2,/3) = diag(31750, 5000, 33450) slug ft 2

the length of the beams: 11 =12 =187.7 ft, I_ =66 ft,

Flexural rigidity: EIs_ =EIbz =lOSlb ft 2, EIiy =EIiz =3565.5 lb ft 2, for i=1,2,5,

Mass density: pi =8.25 x 10 -2 slug/ft,

Dlo =(3+ _, 33, 0)', 02o =(3+ _2,-33,0)', 050 =(190.7,-33+ _5, O)'ft, m, =300 slug.

Initial Conditio0s:

wl (0)=0.03, w2(0) =0.02, ws(0) = 0.01 rad/sec and for _, e[0,l,] and i=1,2, 5, -_t (_i,0) =--_t (_i,0)
oz.

= ot (_i, 0) =0, xi(_i,0)= yi(_i,O) =zi(_i,O) =_bo (_i), where ¢o satisfies the boundary conditions (equations
3.9%3.120).

Control Gains:

k_ =30000, k2 =10000, ka =100 for t E[0,2.5] and k3 =50000 for t E[2.5,10]; di, =di_ =di_ =0.05 for i=
1,2,5; e_=9000, e2=3000, es=6000. Fl(t) =F2(t) =Fa(t) =0.

Slew maneuver using Bang -Pause -Bang control with the parameters:

T,: = 10035, t, _=0.5see, t,: =2.0see, t, 3=2.5see.

slew control

7;,

- 7_1

1
Is,

• time

Fig.3 Bang-Pause-Bang Control.

Detailed numerical results showing stabilization of the various state trajectories were obtained from the
simulation and presented in Figs. 4-23. Figs.4 and 5 represent the slew angle and the angular rate of the
spacecraft corresponding to the slew control (Fig.3). We note from the Fig.4 that slew maneuver was suc-
cessfully achieved by the slew control commands. As one can see from Eqs.(30-45), the body translation,
body rotation and vibration of beams are strongly coupled. This implies that any perturbation in one part of
the system will induce disturbances in the other members of the system. Hence the slew maneuver induced

significant perturbations leading to beam vibrations and body rotation. This is clearly observed from the
responses without controls. From Figs.4-23 it is clear that without stabilizing controls beam vibrations, body
oscillations and radial excursions persist or grow. However, with application of the proposed feedback controls,
oscillations induced by the slew maneuver are effectively eliminated throughout the entire system.
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5. CONCLUSIONS

In this paper, suppression of vibration induced by slew maneuver in flexible space stations has been
considered. Based on the dynamic model developed by the authors[13], asymptotic stability of the system
subject to perturbation is investigated. The rotational perturbing forces were applied to the system and their
corresponding stabilizations have been demonstrated. From the numerical results it is clearly observed that
(i)if the disturbances following external perturbing forces persist, then in the absence of proper controls, these

small motions may build up leading to instability of the entire system, (ii)during the slew maneuver, vibration
in the beams and oscillations in the angular velocities of the body are induced and it has been shown that the
stabilizing control can effectively eliminate the oscillations and stabilize the entire system.
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